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Versuchsprotokoll Labor Maschinendynamik  
Gruppe 4 

Anna Wiering, Jonas Höhnel, Alexander König, 19.11.2019, Wolfenbüttel 

 

1 Messen der Eigenfrequenzen durch Anregung 

Tabelle 1.1: Anforderungen an die Messtechnik 

Technischer Aufbau  Auswahl eines Verfahrens anhand 

 Sensoren: Hohe Empfindlichkeit 

 Sensoren: Messbereich muss zu messenden 
Frequenzbereich abdecken 

 ADC-Wandler: Abtastrate muss Nyquist-Kriterium 
der zu messenden maximalen Frequenz erfüllen 

 Lagerung/Aufhängung: darf Eigenfrequenzbereich   
der zu messenden Bauteile nicht beeinflussen 

 Zugänglichkeit der Mess-, bzw. Anregungspunkte 

 Anforderungen an Unversehrtheit der 
Messstellenoberflächen (entgegen Anbringung von 
Sensoren) 

 Kosten (viele oder schwer zugängliche Messstellen) 

 Durchführungsgeschwindigkeit 

 

Tabelle 1.2: Gegenüberstellung der Anregungsarten 

Shakeranregung  Impulshammeranregung 

- Hohe Kosten + Geringe Kosten 

+ Hohe Reproduzierbarkeit, da Anregung identisch - Geringere Reproduzierbarkeit, da Anregungsort und –
kraft variabel 

- Mechanische Verbindung des Shakers beeinflusst das 
Frequenzverhalten (Masse) 

+ Keine zusätzliche Massenanbringung an zu messendes 
Bauteil durch Schwingungsanregung 

 Nur nutzbar, wenn Eigenfrequenz der Aufhängung 
(Gummibänder f ≈ 4Hz) nicht im Bereich der zu 
messenden Eigenfrequenzen liegt 

 Mit Shakern kann Fahrversuch auf unebener 
Fahrbahn simuliert werden  

 Möglichkeit der Inverse: X Messpunkte und 1 
Anregungspunkt oder 1 Messpunkt und X 
Anregungspunkte (spart Zeit, da Messstellen nicht 
angebracht werden müssen; Anregung an Stellen 
möglich wo Messstelle schwer anbringbar ist) 

 

Abbildung 1.1: Aufbau Shakeranregung 

 

Abbildung 1.2: Aufbau Hammeranregung 

Beschleunigungssensoren Brüel & Kjær, Typ 4507-B 

fMess = 0,3 – 6000Hz 

Beschleunigungssensoren Brüel & Kjær, Typ 4507-B 

fMess = 0,3 – 6000Hz 

Kraftsensor Brüel & Kjær, Typ 8230-002 

fMess = 0 – 7000Hz 

Shaker RMS, Typ SEW 122/3 Impulshammer Brüel & Kjær, Typ 8206 

 

https://www.bksv.com/en/products/transducers/vibration/Vibration-transducers/accelerometers/8230-002
https://www.bksv.com/en/products/transducers/vibration/Vibration-transducers/accelerometers/8230-002
https://www.bksv.com/en/products/transducers/vibration/Vibration-transducers/accelerometers/8230-002
https://www.bksv.com/en/products/transducers/vibration/Vibration-transducers/accelerometers/8230-002
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1.1 Versuch Shakeranregung 

1.1.1 Aufbau 

Ein Balken aus Edelstahl (siehe Abbildung 1.1) ist am Messpunkt 6 (siehe Abbildung 2.2 und Abbildung 2.3) fest mit 

dem Shaker Verbunden. Die Aufhängung erfolgt an 4 elastischen Seilen an den äußeren Bohrungen (siehe Abbildung 

1.1). Auf der Oberfläche des Balkens befinden sich an den eingezeichneten Stellen 30 Messpunkte mit Vorrichtungen 

zum Befestigen von Beschleunigungssensoren (seismische Massen, die mit piezoelektrischen Elementen mechanisch 

verbunden sind). In der Verbindung zwischen Shaker und Balken befindet sich ein Kraftsensor (piezoresistiv), welcher 

die wirkende Kraft misst. 

 

 

Abbildung 1.3: Signalfluss des Shakeraufbaus 

 

1.1.2 Durchführung 

Der Shaker regt den Balken 2-mal nacheinander mit einer Frequenz von 4-6000 Hz (siehe Messbereich Sensoren 

Tabelle 1.2) an. Pro Messung wird die Beschleunigung an drei Messpunkten gemessen. Dabei handelt es sich immer 

um drei in einer Reihe liegender Messpunkte (1, 11, 21; 2, 12, 22 usw.). In Summe werden 10x3 Messungen 

durchgeführt. Diese werden mittels Fouriertransformation aus dem Zeitbereich in den Frequenzbereich 

transformiert. Anschließend erfolgt die Bildung der Übertragungsfunktion: jedes Messsignal (Beschleunigung) wird 

durch das anregende Signal (Kraft) dividiert, um das Antwortsignal zu normieren, da das anregende Signal nicht 

konstant ist. Es resultiert das Autospektrum. Anschließend werden alle Messdaten am Computer übereinandergelegt 

(Y-Achse Amplitude, X-Achse Frequenz) und die einzelnen Peaks untersucht. 
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Tabelle 1.3: Einstellung des FFT-Analysators 

Der FFT-Analyzer des Messprogrammes bietet 3 Einstellbereiche  an: 

 

Abbildung 1.4: Einstellparameter FFT-Analyse 

Lines: 

 Bestimmt die Anzahl der aufgelösten Amplituden im 
Frequenzbereich (siehe Quantisierung in Abbildung 1.4) 

Span: 

 Legt den darzustellenden Frequenzbereich, startend von 0Hz, 
fest (siehe Abbildung 1.4) 

Overlap: 

 Korrigiert den Wandlungs-Fehler der Fouriertransformation aus 
sprungartigen Signaländerungen (siehe folgenden Absatz) 

 

Tabelle 1.4: Exkurs in den Mechanismus der Fouriertransformation 

Die Fourieranalyse bedient sich an einem Ausschnitt des Zeitsignals (Zeitfenster) und reiht dieses unendlich mal 
hintereinander, um eine stationäre Schwingung zu erzeugen. 

  
 Weisen die Sinusanteile einer Schwingung 

Nulldurchgänge direkt an den Grenzen des 
Zeitfensters auf, so lässt sich mit der Fourieranalyse 
direkt die Frequenz zuordnen.  

 In der Regel weisen die Sinusanteile einer Schwingung 
keine Nulldurchgänge an den Grenzen des Zeitfensters 
auf. 

 An den Grenzen der Aneinanderreihung entstehen so 
Sprünge, die zu (fehlerhaften/ ungewollten) 
dargestellten Frequenzschaubild führen. 

 
Um den Fehler aus der Fourieranalyse zu reduzieren, wird das Zeitsignal mit dem sogenannten Hanning-Fenster 
multipliziert. Die Multiplikation sorgt für eine sukzessive Abschwächung der Amplitude in Richtung der Grenzen des 
FFT-Zeitfensters. Das führt dazu, dass nach der Aneinanderreihung der modifizierten Zeitfenster keine Sprünge mehr 
zu registrieren sind. Nebeneffekt stellt die Reduzierung der mittleren Amplitude dar. 
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1.1.3 Ergebnisse 

 Biegung Torsion 

1. Eigenform 378 Hz 1200 Hz 

2. Eigenform 1021 Hz 2508 Hz 

3. Eigenform 2019 Hz 3850 Hz 

4. Eigenform 3309 Hz 5200-5400 Hz 

5. Eigenform 4766 Hz  
 

Da das Bauteil inhomogen ist (ungleiche Masseverteilung, ungleiche 
E-Modul, Verspannungen durch Schleifen…) liegen die Amplituden 
der einzelnen Messungen im Diagramm nicht sauber übereinander. 
Dadurch wird es schwieriger die exakte Eigenfrequenz zu 
bestimmen. Die 5. Eigenform der Torsion befindet sich außerhalb 
des Anregungsbereiches (siehe Abschnitt 4). 

 

 

1.2 Versuch Hammeranregung 

1.2.1 Aufbau 

Ein Balken aus Edelstahl liegt auf einem Stück Pyramiden-Schaumstoff. Auf der Oberfläche des Balkens befinden sich 

29 Messpunkte mit Vorrichtungen zum Befestigen von Beschleunigungssensoren (siehe Abbildung 1.2). An der Stelle 

des fehlenden Messpunktes (Messpunkt 5) wird mit dem Impulshammer angeregt. Die 30. Messstelle befindet sich 

auf der Unterseite. Im Kopf des Impulshammers befindet sich ein Kraftaufnehmer. 

 

1.2.2 Durchführung 

Tabelle 1.5: Übersetzung eines Impulses in den Frequenzbereich 

Das Impulssignal wird zunächst über die Multiplikation mit einer getriggerten Transienten-Fensterfunktion 
beschnitten 

 

Abbildung 1.5: Impuls im Frequenzbereich 

 Es ist eine Überlagerung vieler einzelner Frequenzen (f > 0) 

 Die Amplitude der Anteile nimmt dabei degressiv mit ihrer 
Frequenz ab (siehe Abbildung 1.5) 

 Dem Impuls sind die einzelnen charakteristischen 
Frequenzanteile des angeregten Bauteils überlagert 

 Durch Division mit einer hinterlegten Impulsfunktion können 
diese ermittelt werden 

Die Anregung des Balkens erfolgt über drei kurz nacheinander ausgeführte leichte Schläge mit dem Hammer auf die 

Stelle an der sich normalerweise Messpunkt 5 befände. Auch hier werden pro Durchgang jeweils an drei Messstellen 

die Beschleunigungen gemessen, wodurch sich in Summe wieder 10x3 Messungen ergeben. Diese werden mittels 

Fouriertransformation aus dem Zeitbereich in den Frequenzbereich transformiert. Anschließend erfolgt die Bildung 

der Übertragungsfunktion: jedes Messsignal (Beschleunigung) wird durch das anregende Signal (Kraft) dividiert, um 

das Antwortsignal zu normieren, da das anregende Signal nicht konstant ist. Es resultiert das Autospektrum. 

Anschließend werden wie im vorherigen Versuch alle Messdaten am Computer übereinandergelegt (Y-Achse 

Amplitude, X-Achse Zeit) und die einzelnen Peaks untersucht. 
 

1.2.3 Ergebnisse 

 Biegung Torsion 

1. Eigenform 380 Hz 1200 Hz 

2. Eigenform 1040 Hz 2520 Hz 

3. Eigenform 2030 Hz 3850 Hz 

4. Eigenform 3320 Hz 5370 Hz 

5. Eigenform 4900 Hz  
 

Beim Vergleich der Eigenfrequenzen für die jeweils gleichen 
Eigenformen aus beiden Versuchen kann festgestellt werden, dass die 
gemessenen Frequenzen zwar voneinander abweichen aber sich immer 
im selben Bereich befinden. Die Abweichungen sind auf die 
Inhomogenität der Balken, die unterschiedlichen Anregungsarten 
(Eintrag von Masse in das System bei der Shakeranregung) und 
Messungenauigkeit zurückzuführen. 
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2 Auswertung der Peaks 

Die Peaks treten auf, wenn eine Eigenfrequenz vorliegt. Dies lässt sich dadurch begründen, dass bei Erreichen der EF 

die Amplitude maximal ansteigt. Damit steigt auch die Beschleunigung, die der Balken örtlich erfährt.  

Diese wird vom Piezokristall des Messsignalaufnehmers in Form von Spannungspotentialen ausgegeben und von der 

Elektronik in Digitalsignale gewandelt. Die Extremwerte der Digitalsignale sind äquivalent zur auftretenden 

Beschleunigung. Aus dieser Antwort, kann in Abhängigkeit zur Anregungsfrequenz, auf eine Resonanzfrequenz 

geschlossen werden. Während der Messung mit dem Shaker werden die Eigenfrequenzen schnell durchlaufen, um 

ein Aufschwingen zu unterbinden (siehe Änderungsrate in Abbildung 1.3). 

Der Zusammenhang zwischen den Peaks und der Eigenfrequenz bzw. Eigenform des Balkens ergibt sich wie folgt: 

 

Abbildung 2.1: Nachweilwinkel 

Eigenfrequenz bei 
Ω

𝜔𝑑
= 1, 𝑚𝑖𝑡 𝜔𝑑 ≈ 𝜔 

Nacheilwinkel 𝜓 = 90° bei 𝜂 =
Ω

𝜔
= 1 

 Stellt sich ein Peak in der Antwort des Balkens bei einer 
Erregerfrequenz ein 

 und weist das anregende- zum Messsignal einen Phasenversatz von 
±90° auf (hoher Imaginärteil siehe Abbildung 2.1) 

  

So nimmt der Balken an dieser Anregungsfrequenz eine Eigenform an. Er 
nimmt zu jeder Eigenfrequenz eine zugehörige charakteristische 
Eigenform an, die durch die graphische Darstellung eingeordnet werden 
kann. Über sie kann Rückschluss auf Art und Grad der Eigenfrequenz 
(z.B.: zweite Eigenfrequenz Biegung) getätigt werden. 

Tabelle 2.1: Ort der Anregung 

 
 

Abbildung 2.2: Ort der Anregung in L-t-Ebene Abbildung 2.3: Ort 
der Anregung in B-
t-Ebene 

Warum ist es wichtig, den Ort, an dem die Struktur angeregt wird, sorgsam auszuwählen? 

 Die Anregung muss geschickt so gewählt werden, dass nicht in einem Knoten einer bedeutsamen Eigenfrequenz 
angeregt wird (siehe beispielsweise in Beachtung der bedeutsamen Biegemoden in Tiefe und Länge in Abbildung 
2.2) 

 Wenn im Knotenpunkt einer oder mehrerer Eigenfrequenzen mit der Frequenz f angeregt wird, gibt der Balken 
auf die Frequenz f keine Antwort und die Eigenfrequenz geht in der Messung unter 

 Wenn mit einer anderen Anregungsart angeregt wird, als gemessen werden soll wird die Eigenform nicht erzeugt 

 Deswegen wurde die Kraft nicht in der Symmetrieebene des Balkens eingeleitet (siehe Abbildung 2.3), 
sodass der Balken auch in Torsion angeregt wird 

Es lassen sich jeweils die ersten 9 Eigenformen in Biegung und Torsion finden. Die Eindeutigkeit der Messergebnisse 

nimmt dabei zu höheren Frequenzen stark ab. Nicht zuordnungsbare Messergebnisse sind nicht in die Auswertung 

aufgenommen worden. 
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Tabelle 2.2: Darstellung der Messergebnisse 

1. Biegemode 378Hz / 380Hz 2. Biegemode 1021Hz / 1040Hz 3. Biegemode 2019Hz / 2030Hz 4. Biegemode 3309Hz / 3320Hz 5. Biegemode 4766Hz / 4900Hz 

     

     

 

1. Torsionsmode 1200Hz / 1240Hz 2. Torsionsmode 2508Hz / 2520Hz 3. Torsionsmode 3850Hz / 3850Hz 4. Torsionsmode 5400Hz / 5370Hz 5. Torsionsmode 
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3 Analytische Berechnung der Biegungsmoden 

 

Berechnung der Eigenfrequenzen 

Eingangsparameter des Flachstabs 

Geometrie Werkstoff 

𝐿 = 400𝑚𝑚 

𝐵 = 70𝑚𝑚 

𝑡 = 12𝑚𝑚 

𝐸1.4301 = 210000 ∙ 103
𝑘𝑔 ∙ 𝑚𝑚

𝑠2 ∙ 𝑚𝑚2
 

𝜌1.4301 =
7,84

103

𝑔

𝑚𝑚³
 

Ausgangsparameter des Flachstabs 

Aus Geometrie  

𝐼 = 𝐼𝑦 = 𝐼𝐵 =
𝐵 ∙ 𝑡3

12
 

⇒ 𝐼 = 10080𝑚𝑚4 

 

𝐴 = 𝐴𝐵𝑡 = 𝐵 ∙ 𝑡 

⇒ 840𝑚𝑚2 

 

𝜆𝑗 = ((2 ∙ 𝑗) + 1) ∙
𝜋

2
 

𝜔𝑗 = 𝜆𝑗
2 ∙ √

𝐸 ∙ 𝐼

𝜌 ∙ 𝐴 ∙ 𝐿4

2

 

𝑓𝑗 =
𝜔𝑗

2 ∙ 𝜋
 

j 

[] 

Λj 

[] 

ωj  

[rad/s] 

fj  

[Hz] 

fj_Shaker  

[Hz] 

fj_Impulshammer  

[Hz] 

1 4,71 2488 396 378 380 

2 7,85 6912 1100 1021 1040 

3 11,00 13547 2156 2019 2030 

4 14,14 22395 3564 3309 3320 

5 17,28 33454 5324 4766 4900 
 

 

4 Die Modalanalyse 

Mode Zuordnung Frequenz [Hz] 

1 Translation X 0 

2 Translation Y 0,0062 

3 Translation Z 0,0079 

4 Drehen Y 7,0827 

5 Drehen Z 12,269 

6 Drehen X 83,762 

7 1. Biegung (Ebene Lt) 392,94 

8 2. Biegung (Ebene Lt) 1080,8 

9 1. Torsion (Ebene Bt) 1279,1 

10 1. Biegung (Ebene LB) 2071,4 

11 3. Biegung (Ebene Lt) 2106,8 

12 2. Torsion (Ebene Bt) 2605,7 

13 4. Biegung (Ebene Lt) 3461,7 

14 3. Torsion (Ebene Bt) 4012,3 

15 2. Biegung (Ebene LB) 4974,5 

16 5. Biegung (Ebene Lt) 5115,6 

17 4. Torsion (Ebene Bt) 5553,7 
 

Eine Modalanalyse mittels FEM-Software spart Zeit und 
Geld. Die Abschätzung von Eigenformen in komplexen 
Geometrien ist schwer, wenn nicht unmöglich. Die 
Messungen der Eigenformen am realen Bauteil würden 
die Herstellung eines Prototypen erfordern. Dies ist 
teuer und unwirtschaftlich. Kritische Frequenzen können 
über die Voraussage der Eigenformen in einer 
Modalanalyse mittels FEM ermittelt werden. So können 
kritische Eigenfrequenzen während des 
Konstruktionsprozesses erkannt und ihnen über 
konstruktive Anpassungsmaßnahmen frühzeitig 
entgegengesteuert werden. 

 

In einer Modalanalyse hat die Lagerung des Bauteils 
entscheidenden Einfluss auf die Eigenformen. Zur 
Simulation der durchgeführten Versuche wird das 
Bauteil ungelagert im Raum analysiert. Aus diesem 
Grund entsprechen die ersten 6 Eigenfrequenzen den 6 
Freiheitsgraden des Bauteils (siehe Tabelle linke Hand). 
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